

Highly Efficient and Versatile Synthesis of Lactams and N-Heterocycles via Al(OTf)₃-Catalyzed Cascade Cyclization and Ionic **Hydrogenation Reactions**

Jianguo Qi, †, § Chenbin Sun, ‡, § Yulin Tian, † Xiaojian Wang, *, †, ‡ Gang Li, † Qiong Xiao, ‡ and Dali Yin *, †, ‡

Supporting Information

ABSTRACT: The discovery and development of an efficient and versatile method for the synthesis of N-substituted lactams is described. Pyrrolindinones, piperidones, and structurally related heterocycles were formed by Al(OTf)₃-catalyzed cascade cyclization and ionic hydrogenation reactions of corresponding nitrogen n=1 or 2 X=CH2, O R1= aryl, alkyl, heterocyclyl R2=Me, Ph substituted ketoamides in good yields.

$$R^{1} \xrightarrow{H} X \xrightarrow{O} R^{2} \xrightarrow{Al (OTf)_{3}, Et_{3}SiH} O \xrightarrow{X \xrightarrow{N} R^{2}} R^{2}$$

N-Substituted lactams constitute an important class of chemical structures that have found widespread applications in agrochemicals, pharmaceuticals (Figure 1), and other industries. 1

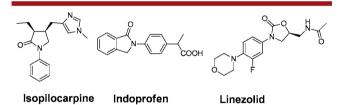


Figure 1. Pharmacologically active nitrogen substituted lactams.

Because lactam derivatives have great influence in their properties, efficient methods for the preparation of this structural unit are highly desirable. In the past few decades, several approaches to lactams have been developed (Scheme 1). Nicolaou and Li et al. reported that pyrrolidinones could be formed by unactivated alkenes via a radical mechanism.^{2,3} Che et al. and Hartwig also used alkenes as starting material to afford pyrrolidinones by a hydroamination method.^{4,5} Baudoin and co-workers reported a novel method for preparing Narylated lactams that relied on the Pd-catalyzed coupling reaction.⁶ In addition, transition-metal-catalyzed reductive amination methods were developed to convert levulinic acid to pyrrolidinones in one pot. During studies on the methodology of the construction of heterocycles, we discovered that Al(OTf)₃-catalyzed cascade cyclization and ionic hydrogenation reactions could generate five- and six-membered heterocycles with substitution of various groups in good yields under conventional conditions.

The idea was based on our recent finding that tetralins could be obtained from arene-1,4-diones with a combination of TiCl₄/Et₃SiH.⁸ Encouraged by this result, we conceived that

Scheme 1. Strategies for the Synthesis of Pyrrolidinones and **Piperidones**

Traditional strategies for the synthesis of pyrrolidinones

such a combination might be utilized though Lewis acid catalyzed cyclization and ionic hydrogenation to provide pyrrolidinones from N-substituted γ -ketoamides. 4-Oxo-Nphenylpentanamide 1a was initially employed as a substrate with the TiCl₄ /Et₃SiH/CH₂Cl₂ system in our investigation. Hydroxyamide 1c was detected as the major product while only 10% N-phenyl pyrrolidinone (1b) was obtained (Table 1, entry 1). Further study was performed to investigate the effects of different solvent systems and various Lewis or Brønsted acid catalysts for intramolecular cyclization of γ -ketoamide 1a. As shown in Table 1, CH₃CN proved to be superior and resulted in a 30% yield among the solvents tested (Table 1, entries 1-

Received: November 3, 2013 Published: December 6, 2013

[†]State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China

Department of Medicinal Chemistry, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China

Organic Letters Letter

Table 1. Optimization of the Reaction Conditions^a

				yield ¹	$yield^b$ (%)	
entry	catalyst (equiv)	solvent	time (h)	1b	1c	
1	TiCl ₄ (2.0)	CH_2Cl_2	5	10	65	
2	$TiCl_4$ (2.0)	THF	5	25	30	
3	$TiCl_4$ (2.0)	CH ₃ CN	4	30	45	
4	$TiCl_4$ (2.0)	toluene	5	0	50	
5	SnCl ₄ (2.0)	CH ₃ CN	4	8	50	
6	AlCl ₃ (2.0)	CH ₃ CN	4	29	69	
7	CF_3COOH (2.0)	CH ₃ CN	3	76	0	
8	$Al(OTf)_3$ (2.0)	CH ₃ CN	1	97	0	
9	$Al(OTf)_3(1)$	CH ₃ CN	1	98	0	
10	$Al(OTf)_3 (0.5)$	CH ₃ CN	1	98	0	
11^c	$Al(OTf)_3 (0.5)$	CH ₃ CN	1	80	0	
12^d	$Al(OTf)_3$ (0.5)	CH ₃ CN	1	45	0	
13	$Al(OTf)_3$ (0.2)	CH ₃ CN	2	85	0	

^aAll reactions were performed at reflux for 1-5 h with 1.0 mmol of 1a, the indicated amount of Lewis or Brønsted acid, and 2.0 equiv of Et₃SiH in 5.0 mL of the indicated solvent. ^bIsolated yields. ^c1.5 equiv of Et₃SiH. ^d1.0 equiv of Et₃SiH.

4). Then, attention was turned to screen various Lewis or Brønsted acids (Table 1, entries 5–8) to facilitate the cyclization step. Notably, Al(OTf)₃ (Table 1, entry 8) was found to be more generally effective than other agents. The yield of **1b** was significantly increased to 97% with 2 equiv of Al(OTf)₃ after only 1 h. To further optimize the reaction parameters, the catalyst loadings were reduced to 1, 0.5, and 0.2 equiv, leading to 98%, 98%, and 85% yields, respectively (Table 1, entries 9, 10, and 13). The amount of Et₃SiH was also observed to affect the yield of **1b** (Table 1, entries 10–12). The best result was found that **1a** was added into CH₃CN with Al(OTf)₃ (0.5 equiv)/Et₃SiH (2 equiv) and refluxed for 1 h to afford **1b** in 98% yield.

After the optimized reaction conditions were established, we examined the scope and limitation of this cascade process for the assembly of 5-methyl-N-(aryl,alkyl)-2-pyrrolidinones. Both amides from anilines or alkylamines were used to explore the scope of the reaction. To our delight, the reaction was unbiased to aryl (Table 2, entries 1-12) or alkyl (Table 2, entries 13-16) substitution on the nitrogen atom. It was found that all compounds with electron-donating groups (Table 2, entry 6), electron-withdrawing groups (Table 2, entries 1, 7-9, and 11), and halides(Table 2, entries 1-3, 10, and 11) situated at the ortho, meta, or para position at the aniline phenyl ring proceeded smoothly and in good yields. It was noteworthy that the nitro group substituted compound (Table 2, entry 8) was converted into the corresponding product in good yield, which was reported as being difficult to prepare under normal conditions.² The heterocycle substituted ketoamides (Table 2, entries 17 and 18) were also found to work well in the current reaction system. In addition, structure diverse pyrrolidinones (Table 2, entries 19-23) had also been obtained in moderate to good yields. Encouraged by the results above, the generality of this catalytic system was further tested in the reaction of δ ketoamides. Corresponding piperidones (Table 2, entries 24-28) had been achieved, which represented another class of

Table 2. Assembly of N-Substituted Pyrrolidinones and Piperidinones from Ketoamides^a

$$R^{1}$$
 R^{2}
 R^{2}

					R'	
entry	\mathbb{R}^1	\mathbb{R}^2	n	substrate	product	yield ^b [%]
1	4-FC ₆ H ₄	Me	1	2a	2b	94
2	4-ClC ₆ H ₄	Me	1	3a	3b	90
3	$4-BrC_6H_4$	Me	1	4a	4b	81
4	4-MeC_6H_4	Me	1	5a	5b	80
5	4-EtC_6H_4	Me	1	6a	6b	83
6	4-MeOC ₆ H ₄	Me	1	7a	7b	81
7	$4-CF_3C_6H_4$	Me	1	8a	8b	92
8	$4-NO_2C_6H_4$	Me	1	9a	9b	83
9	4-CNC ₆ H ₄	Me	1	10a	10b	84
10	3-ClC ₆ H ₄	Me	1	11a	11b	81
11	2-FC_6H_4	Me	1	12a	12b	86
12		Me	1	13a	13b	80
13	n-Pentyl	Me	1	14a	14b	82
14	Cyclohexyl	Me	1	15a	15b	82
15	-CH ₂ CO ₂ CH ₃	Me	1	16a	16b	60
16	Benzyl	Me	1	17a	17b	88
17	3-thienyl	Me	1	18a	18b	50
18	5-quinolyl	Me	1	19a	19b	65
19	Ph	Ph	1	20a	20b	96
20	$4-CF_3C_6H_4$	Ph	1	21a	21b	86
21	4-MeOC ₆ H ₄	Ph	1	22a	22b	82
22	Benzyl	Ph	1	23a	23b	75
23				o o o o o o o o o o o o o o o o o o o	Ph-N 24b	50
24	Ph	Me	2	25a	25b	80
25	4-ClC ₆ H ₄	Me	2	26a	26b	90
26	4-MeOC ₆ H ₄	Me	2	27a	27b	97 71
27	4-CF ₃ C ₆ H ₄	Me	2	28a	28b	71 72
28	3-thienyl	Me	2	29a	29b	72

^aReaction conditions: All reactions were performed at reflux for 1–4 h with 1.0 mmol of 1a, 0.5 equiv of Al(OTf)₃, and 2.0 equiv of Et₃SiH in 5.0 mL of dry acetonitrile. ^bYield of isolated product.

important heterocycle compounds of significant bioactive interest.

This Al(OTf)₃-catalyzed cascade cyclization and ionic hydrogenation reaction was considered to provide an efficient alternative method for the formation of the C–N bond, which might enable the construction of structure diverse lactams from a vast array of building blocks. Remarkably, isoindolinones, oxazolidinone, and dihydroquinazolinone were readily assembled from the corresponding *N*-aryl amides, carbamates, and open-chain ureas, respectively, with good yields (Table 3).

The X-ray crystal structure of representative target molecule **20b** (CCDC 969129) was elucidated (Figure 2), showing that the desired intramolecular cyclization of ketoamide had been achieved by this protocol.

Organic Letters Letter

Table 3. Assembly of Isoindolinones, Oxazolidinone, and Dihydroquinazolinone Catalyzed by Al(OTf)₃^a

entry	substrate	product	yield ^b (%)
1	O N 30a	30b	75
2	31a	N—————————————————————————————————————	71
3	32a:	N-()-0'	81
4	33a	33b	65
5	34a	34b	73

"Reaction conditions: All reactions were performed at reflux for 1-4 h with 1.0 mmol of 1a, 0.5 equiv of Al(OTf)₃, and 2.0 equiv of Et₃SiH in 5.0 mL of dry acetonitrile. ^bYield of isolated product.

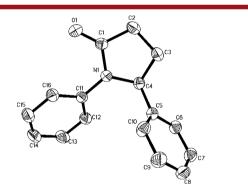


Figure 2. X-ray crystal structure of compound 20b.

In conclusion, we have developed an efficient and verstaile Al(OTf)₃-catalyzed cascade cyclization and ionic hydrogenation method for *N*-substituted lactams preparation. The reaction is applicable to a wide range of substrates with various functional groups to afford the corresponding pyrrolidinones, piperidones, and structure related heterocycles in moderate to good yields. The ease of preparation of the nitrogen substituted precursors, the mild reaction conditions, and the efficiency of this reaction that enable cyclization and hydrogenation to be attainable in one step make this protocol an attractive methodology in organic synthesis.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization data for all compounds and X-ray crystal structure data (CIF) for compound **20b**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: wangxiaojian@imm.ac.cn.

*E-mail: yindali@imm.ac.cn.

Author Contributions

§These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (NSFC No. 81102322), PUMC Youth Fund (No. 3332013072), and the Fundamental Research Funds for the Central Universities.

REFERENCES

- (1) (a) Brickner, S. J.; Barbachyn, M. R.; Hutchinson, D. K.; Manninen, P. R. J. Med. Chem. 2008, 51, 1981. (b) Das, S.; Addis, D.; Knopke, L. R.; Bentrup, U.; Junge, K.; Bruckner, A.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9180. (c) Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 4526. (d) Manzer, L. E. U.S. Patent 6,818,593, 2004.
- (2) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 625.
- (3) (a) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640. (b) Lu, H.; Li, C. Tetrahedron Lett. 2005, 46, 5983.
- (4) Liu, X.-Y.; Li, C.-H.; Che, C.-M. Org. Lett. 2006, 8, 2707.
- (5) Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471.
- (6) Guyonnet, M.; Baudoin, O. Org. Lett. 2012, 14, 398.
- (7) (a) Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Li, J.; Xiao, J. Chem. Commun. 2013, 49, 5408. (b) Huang, Y. B.; Dai, J. J.; Deng, X. J.; Qu, Y. C.; Guo, Q. X.; Fu, Y. ChemSusChem 2011, 4, 1578. (c) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem., Int. Ed. 2011, 50, 7815.
- (8) Li, G.; Xiao, Q.; Li, C.; Wang, X.; Yin, D. Tetrahedron Lett. 2011, 52, 6827.
- (9) (a) Elworthy, T. R.; Brill, E. R.; Caires, C. C.; Kim, W.; Lach, L. K.; Tracy, J. L.; Chiou, S. S. Bioorg. Med. Chem. Lett. 2005, 15, 2523.
 (b) Miller, T. A.; Ghosh, J.; Myers, C. E.; Macdonald, T. L. Bioorg. Med. Chem. Lett. 2000, 10, 1913.